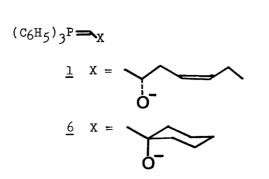
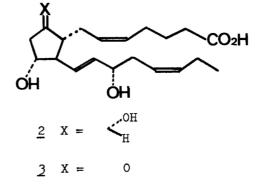
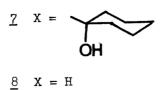
CHEMISTRY LETTERS, pp. 1211-1214, 1977. Published by the Chemical Society of Japan

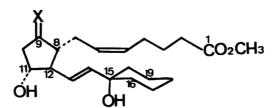
SYNTHESIS OF 15,19-METHANO-W-NOR-PROSTAGLANDINS

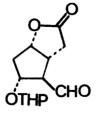

Haruki NIWA and Masayasu KURONO^{*} Research Institute, ONO Pharmaceutical Co., Ltd. 3-1-1, Sakurai, Shimamoto-cho, Mishima-gun, Osaka 618

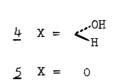

15,19-Methano- ω -nor-prostaglandin F_{26} and E_2 methyl ester, <u>4</u> and <u>5</u>, were synthesized from (-)-Corey's aldehyde <u>9</u> and the β -oxido ylide <u>6 via</u> allylic rearrangement of the intermediate <u>17</u>.

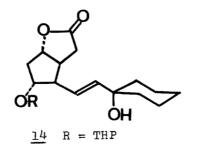
Recently, the Wittig reaction using the β -oxido ylide <u>1</u> has been successfully applied to the synthesis¹) of prostaglandin $F_{3\alpha}$ and E_3 , <u>2</u> and <u>3</u>. This communication reports the synthesis of 15,19-methano- ω -nor-prostaglandin $F_{2\alpha}$ and E_2 methyl ester, <u>4</u> and <u>5</u>, using the β -oxido ylide <u>6</u>, bearing an oxido group on a tertiary carbon atom, which was derived from the β -hydroxy phosphonium iodide <u>7</u>.

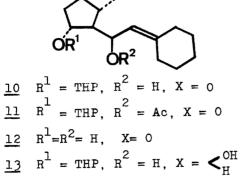

The desired β -hydroxy phosphonium iodide 7 was prepared by the known procedure²) as follows. Methylidenetriphenylphosphorane obtained from methyltriphenylphosphonium iodide 8 (1 equiv) and phenyllithium (1 equiv) in dry ether at 25°C for 30 min was treated with the freshly distilled cyclohexanone (1 equiv) at 0°C for 1 min, and immediately quenched with excess aqueous HI (9N) to give massy solids of the β hydroxy phosphonium iodide 7 [50% yield from 8; pmr (CDCl₃) δ 3.90 ppm (2H, d, J=13 Hz, HO-C-CH₂-P⁺(C₆H₅)₃)].

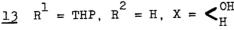

Treatment of 7 in dry THF with methyllithium (2 equiv) at -30°C for 20 min gave the reddish orange solution containing the β -oxido ylide <u>6</u>.¹⁾ The ylide solution was cooled down to -70°C and treated with (-)-aldehyde <u>2¹⁾</u> (1 equiv) for 10 min and further at 0°C for 1 hr to give not a desired tertiary allylic alcohol <u>14</u> but a secondary allylic alchol <u>10³</u> [30% yield from <u>2</u>; pmr (CDCl₃) § 4.29 (1H, dd, J=9 and 6 Hz, -C=CH-CH-OH) and 5.14 ppm (1H,bd, J=9 Hz, -C=CH-CH-OH); mass m/e 350 (M⁺); ir (CHCl₃) 3600, 3450 and 1770 cm-1; [\propto]²³_D -34.1° (<u>c</u>=1.98, CHCl₃)]. The secondary allylic alcohol <u>10</u> was easily converted into the tertiary allylic alcohol <u>15</u> under an aqueous acidic condition.⁴ After reduction of <u>10</u> with diisobutyl-

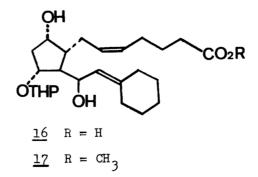



(C6H5)3PCH2-X I-






<u>9</u>



<u>15</u> R = H

aluminun hydride (2 equiv) in toluene at -70° C for 15 min, the resulting mixture of diols $\underline{13}^{5}$ was treated with excess of 4-carboxy-n-butylidenetriphenylphosphorane in DMSO at 50°C for 2 days to give carboxylic acid <u>16</u> [ir (CHCl₃) 3400 and 1710 cm⁻¹; mass m/e 436 (M⁺)] which was treated with diazomethane to afford the corresponding ester <u>17</u> [30% yield form <u>10</u>; pmr (CDCl₃) § 3.67 ppm (3H, s, -COOC<u>H₃</u>); mass m/e 365 (M⁺-85); ir (CHCl₃) 3600, 3500, 1730 and 1240 cm⁻¹; $[\alpha]_D^{20}$ +38.0° (<u>c</u>=2.60, CHCl₃)]. Removal of THP group from <u>17</u> with AcOH-H₂O-THP at 37°C for 1 hr gave, <u>via</u> allylic rearrangement, 15,19-methano- ω -nor-prostaglandin F₂₀ methyl ester <u>4</u>^{4b} [60% yield; pmr (CDCl₃) § 2.91 (3H, b, (-O<u>H</u>)₃), 3.90 (1H, m), 3.67 (3H, s, -COOC<u>H₃</u>), 5.42 (2H, m, -CH₂-C<u>H</u>=CH-CH₂-), 5.49 (1H, dd, J=16 and 7 Hz, -C<u>H</u>=CH-C-OH) and 5.71 ppm (1H, d, J=16 Hz, -CH=C<u>H</u>-C-OH); mass m/e 366 (M⁺); ir (CHCl₃) 3600, 3400, 1730 and 980 cm⁻¹; $[\alpha]_D^{20} + 31.7^{\circ}$ (<u>c</u>=1.90, CHCl₃)].

According to essentially the same procedure as reported by E. W. Yankee <u>et al</u>, 15,19-methano- ω -nor-prostaglandin F_{20} methyl ester <u>4</u> was converted into the corresponding E₂ methyl ester <u>5</u> [40% yield from <u>4</u>; pmr (CDCl₃) § 3.67 (3H, s, -COOC<u>H₃</u>), 4.05 (1H, m), 5.37 (2H, m, -CH₂-C<u>H</u>=C<u>H</u>-CH₂), 5.55 (1H, dd, J=16 and 7 Hz, -C<u>H</u>=CH-C-OH) and 5,78 ppm (1H, d, J=16 Hz, -CH=C<u>H</u>-C-OH); mass m/e 364 (M⁺); ir (CHCl₃) 3550, 3400, 1740 and 980 cm⁻¹; $[\alpha]_D^{19}$ -70.0° (<u>c</u>=1.45, CHCl₃)] as follows: (a) selective silylation of the hydroxy group at C-ll (prostanoid numbering) with N-trimethylsilyldiethylamide in dry acetone at -45°C for 6 hr. (b) oxidation of C-9 hydroxy group with Collins reagent⁷) (6 equiv) in dry CH₂Cl₂ at 25°C for 5 min. (c) desilylation with AcOH-H₂O-MeOH at 25°C for 1 hr.

These new 15,19-methano- ω -nor-prostaglandin $F_{2\alpha}$ and E_2 methyl ester, <u>4</u> and <u>5</u>, showed less biological activities than those of the corresponding natural prostaglandins.

References and Notes

- E. J. Corey, H. Shirahama, H. Yamamoto, S. Terashima, A. Venkateswarlu and T. K. Schaaf, J. Amer. Chem. Soc., <u>93</u>, 1490 (1971), and references cited therein.
- 2) M. Schlosser and K. F. Christmann, Justus Liebigs Ann. Chem., 708, 1 (1971).
- 3) The structure of <u>10</u> was reliably confirmed by acetylation of the secondary allylic hydroxy group of <u>10</u> with Ac_2O-Py to give the corresponding acetate <u>11</u> [pmr (CDCl₃) § 5.01 (1H, bd, J=9 Hz, -C=CH-CH-OAc) and 5.43 ppm (1H, dd, J=9 and 8 Hz, -C=CH-CH-OAc); ir (CHCl₃) 1770 and 1730 cm⁻¹].
- 4) (a) Treatment of <u>10</u> with MeOH-TSOH gave the diol <u>12</u> [pmr (CDCl₃) δ 4.41 (1H, dd, J=9 and 6 Hz, -C=CH-CH-OH) and 5.18 ppm (1H, bd, J=9 Hz, -C=CH-CH-OH); mass m/e 266 (M⁺)].

(b) On the other hand, treatment of <u>10</u> with AcOH-H₂O-THF under the condition of removal of THP group gave the rearranged diol <u>15</u> [pmr (CDCl₃) δ 5.45 (1H, dd. J=16 amd 7 Hz, -CH=CH-C-OH) and 5.71 ppm (1H, d, J=16 Hz, -CH=CH-C-OH); mass m/e 266 (M⁺)].

- 5) This dial <u>13</u> was used for the next Wittig reaction without further purification. All other new compounds reproted herein were purified by column chromatography on SiO₂.
- E. W. Yankee, C. H. Lin and J. Fried, J. Chem. Soc., Chem. Commun., <u>1972</u>, 1120.
- 7) (a) J. C. Collins, W. W. Hess and F. J. Frank, Tetrahedron Lett., <u>1968</u>, 3363.
 - (b) R. Ratcliffe and R. Rodehorst, J. Org. Chem., <u>35</u>, 4000 (1970).

(Received August 26, 1977)